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v (Vk)) < Cop-l < 6, v (Yik’) Q clpa Q 6 
v (ySk’) < c,p < 6 (k = 0, 1, . . .) 

(8.3) 

hold for p> pa. The proof of this assertion is analogous to that of inequalities 
(4.3) and is carried out using the estimates (7.7), (7.8) and estimates (6.10) in the case 
when '1 ~0, u =E(* ==O+ we introduce the notation 

ak = Y(?$) -E(J+I'), b, = v (yik' - vi”-“), ek=v(yf) - yy-") 

On the strength of inequalities (6.101, (7.7) and (8.3), when p> MS we have 

ak+l< x ($+b,+%). bk+,<$(+++bk) (8.4) 

ck+l < x 
( 

F+bk) (k=1,2,...) 

x = K [I + 2 (C, + C1 + C31 max (N,, 2N) 

Consider the number sequence pk =ak@ + bk + ckp-l (k = i,2,...). As a consequence of 
(8.41, pk+l < hrc”‘?k (k = 4, 2 ..). 

pk+l< pk/2 (k - 1, 2,...)is valid. 
We set M = max(M,, 36x*). Then when pL>M the estimate 

Using this estimate it can be proved that thesequences (W 

(%e, Iul"' (t)& v = 1,2) converge uniformly in the interval [O, 2d to certain continuous 
functions &* 0)s II)* 0) - The relations 

E' (0) = &* (as), !,J* (0) = !,j* (b) (j = 1, 2) 

v ce*, < C,T’I v (srl,) < C,P, v (yz*) g c,p 

hold. Passing to the limit in (8.2) as k + m, we find that E* (t), n*(t) and y,* (t) is the 
solution of system (8.1). The function c* (t) is continuously differentiable, the function 
y,* (t) is twice continuously differentiable, and &* (t)/& = y**(f). Exactly as in the proof 

of Theorem 1 we can establish that the solution found is unique. Having continued the functions 

f.1 bc1* 2s -periodically along the whole real axis, we obtain the desired periodic solution 
of’ system (6.9). 

The author thanks V. A. Sarychev for useful discussions. 
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THE HAMILTON-JACOBI EQUATION IN DOMAINS 
OF POSSIBLE MOTIONS WITH A BOUNDARY* 

R.M. BULATOVICH 

The problem of the existence of solutions of the truncated Hamilton-Jacobi 
equation in the whole domain of possible motions with a boundary is 
investigated. Constraints on the topology of the domains of possible 
motions, in which the Hamilton-Jacobi equation is solvable in the large, 
are pointed out. In particular, the boundary cannot be connected. 
The existence of solutions in the whole domain of possible motions is 
obstructed by focal points at which infinitely close trajectories leaving 
the boundary intersect. A connection between the complete integral of 
the Hamilton-Jacobi equation and the particular solutions in the neigh- 
hourhood of the boundary is indicated. 
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A smooth n-dimensional manifold M serves as the configuration space of a natUral me&- 

anical system with n degrees of freedom, while the tangent bundle TM of the manifold Mserves 
as the phase space. The kinetic energy T: TM- Ris a smooth function in phase space.quadratic 
with respect to the velocities, while the potential energy lJ:M--R is a smooth function on 
M. The motions are smooth mappings m:R- M satisfying in local coordinates Q = (qi) (i = I. . . 

., n) on M Lagrange equations with Lagrangian L = T- U. For a fixed value of h the integralof 
the energy T+ v=h delineatesin the phase space a (2n - i)-dimensional hyperplane IP-l on 
which the system's phase trajectories wholly lie. The natural projection of the hyperplane 
Rm-l onto the manifold M defines a domain 

D=(V<h)cM (0-l) 

in which a motion can take place, i.e., a domain of possible motions. 
According to the principle of least action, inside D the system's trajectoriescoincide 

with the geodesic lines of the Jacobi metric dps=(h- V)drr, where d9is the Riemann metric on 
M specifying the kinetic energy, i.e., T=l/,(dr/dtY. Inside domain D the metric dp is theusual 
Riemann metric, while on the boundary 8D =(V = h) it has a singularity: dp=O, i.e., thelength 
of any curve on the boundary equals zero. The geometry of the geodesics in domains with a 
boundary is similar to the usual geometry of Riemann spaces /l/. 

1. Distance from the boundary as a function of "truncated action". Every- 
where below we assume that there are no equilibrium positions -- critical pointsof potential 
energy IJ -- on the boundary 8D. Then 3D is a smooth (n - l)-dimensional manifold. Thedistance 
of a point q,=D up to the boundary 80 is, by definition, the quantity 

a(q) = $$n d (q* 4 

where d(a, b) denotes the lower bound on lengths in the metric dp of piecewise-smooth curves 
from domain D with ends at points a and b. It has been proved /l/ that for an arbitrary 
point q of a compact domain D a trajectory exists, passing through it, which reaches the 
boundary and whose length equals a(q). Hence it follows, in particular, that the set of all 
trajectories starting at boundary points fills up the whole set D. 

We denote by &the set of points from D whose distance up to the boundary 8D along 
trajectories starting from the boundary equals p. 

Lemma 1.1. A pO>O exists (PO small) such that the distance a(q)== p for all points qE 
z,, OdPCPo ' The set 2, is a smooth hypersurface in D, cliffeomorphic with aD. 

Lemma 1.2 (the analog of Gauss' lemma). A pO>O exists such that for all p E [O, p,] the 
geodesics starting from the points of the boundary aointersectthe hypersurfaces Z, at right 
angles. 

Lemmas 1.1 and 1.2 are proved in /1,2/. From Gauss' lemma it follows that aneighbourhood 
of the boundary 80 exists, i.e., a strip contained between aD and 2,@ is fairly small), in 
which the trajectories starting from boundary points do not intersect. Consequently, a single 
trajectory of this family passes through each point of the small neighbourhood. Hence, in a 
small neighbourhood of aD the integral of truncated action 

. S=SI/hdU=sSI/h-_Ud~-S2Tdt 
V V V 

computed along a trajectory leaving the boundary , can be treated as a function S(q) of a 
finite point q, which, obviously, equals the distance a(q). 

Statement 1.1. The differential of the function S equals 

dS = pdq= jlprdqi 

where p =aT/~ is determined with,reepect to the velocity q' on the trajectory v. 
This statement is analogous to the theorem on the differential of the action function 

(/3/, Chapter 9) and can be proved by the same method. From the energy integral and the 
preceding statement we have the following: 

Statement 1.2. The function S(q)satisfies the equation 

H (aslap, 9) = h 
called the truncated Hamilton-Jacobi equation. 

Since H = T + U, where T =V1(A (q)p, p> is a positive-definite quadratic form (<,> 
is the scalar product), the Hamilton-Jacobi equation can be written as 

=I1 <A (q) asiaq, asi& + u (q) = h (1.1) 

We will investigate the solution of Eq.fl.1) in the domain D, Since dS =0 on the boundary, 
we mean by a solution a smooth function inside the domain D, which takes constant values 
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on each connected component of the boundary 80. 

2. The necessary conditions for the Hamilton-Jacobi equation tobe solv- 
able in the large. Theorem 2.1. A smooth solution of Eq.(l.l) does not exist in thewhole 
domain of possible motions with connected boundary aD. 

Proof. Assuming a solution S to exist, we conclude.that it attains extremal values in- 
side the domain D. Since the gradient of the function S equals zero at an extremal point, it 
follows from (1.1) that this point must be on the boundary 80. We thus have acontradiction. 

On the question of whether domains D are possible in which a solution of Eq.(l.l) in the 
large exists, we have the following: 

Theorem 2.2. If a solution of Eq.(l.l) exists in the whole domain D is diffeomorphic 
with the direct product 

r x 10, Il(aD = I’ x (0) U l? x {l)) 

where I' is a smooth connected compact (a - l)dimensional manifold. 

Proof. We assume the existence of a solution S of Eq.(l.l) in the whole domain (0.1) of 
possible motions. We have already shown that the boundary aD of dcmain D cannot be connected. 
First we consider the case when JD is divided into twonon-intersectingsmooth connected 
manifolds: 3D’ and 13Dl (80 = aD’ U 8D”, 8D’ n ~90” = 0) and S Ien, = cr = cons& S lap = cz = const. 
We denote by &the set of points of D a distance E> 0 in the Jacobi metric from the boundary. 
Let &' and X," be smoothnon-intersectingmanifolds comprising . z,, i.e., Z, = &’ U Z,” (2,’ n 
Z*” = 0b and &'(&") is close to $D'(aD') . The manifold 2, bounds some smooth manifold 
with boundary G, which is contained in D. The function S takes constant values on z,' and 
Z*" and has no critical points on them. Therefore, S can be treated as the Morse function 

of the triad (G,Z,‘,Y&“) of smooth manifolds. Since S does not have critical points in G, 
the triad's Worse number p equals zero. From the trivial cobordism theorem /4/ it follows 
that (G,Z,‘,&“) is a trivial cobordism, i.e., G is diffecmorphic with &' X IO,11 and X," is 
diffeomorphic with Zd. On the other hand, 80’ and 2,‘(3D’ and &")also bound a smooth man- 
ifold with boundary, diffeomorphic with i3D' x [0,11 (~30” X lO,ll). This has been shown, for 
instance, in /l/. By joining the manifolds together along common boundaries, i.e., by 
ideDnt;fly$;y 80‘ x (1) and &'(&' X (1) and ~30” X {I}), we obtain that D is diffeomorphic with 

. The assumption that 80 is divided into only two connectivity components does 
not redu:e the proof's generality. Indeed, by assuming the existence of more than two don- 
nectivity components we conclude that D is partitioned into several manifolds with a boundary, 
each of which is diffeomorphic with a direct product of one boundarycomponentand an interval. 
The theorem is proved. 

Corollary. If a solution of the Hamilton-Jacobi equation exists in the whole domain of 
possible motions, then each trajectory starting from the boundary corresponds to a libration 
motion. 

Proof. We take some trajectory starting from the boundary. Differentiating S along 
the trajectory, we get that inside D 

-$-=-+2(h-U)>O 

Consequently, S increases along this trajectory, and if we assume that S(q(t))It_, = ct. then at 
a specific t' the function S attains a value c, and the moving point is incident on the 

boundary. The number t' is finite since a point cannot asymptotically approachaDae t-m/l/. 
The assertion is proved. 

Example. Let M = R' (2, v), 2T = 2" + y'*. 2U = r’ + ~8 - 20)Tm + 41, a> 0 . The domain of 

possible motions is the ring 

The function 

satisfies the Hamilton-Jacobi equation, is smooth inside D and takes constant values on the 

boundary of the domain D. 

3. Focal points of the boundary of the domain of possible motions. assume 
that the portrait with local coordinates Q = {ql} (i = I,..., n)covers the whole domain D. On 

the boundary aD, in some neighbourhood of an arbitrary point q0 we take the local coordinates 
a = {at}(i = 1, . _, n - 1) such that a = Ocorresponds to point qO. We consider the solutions 

of the equations of motion with the initial conditions 

q = q @, a), q (0) = PO? 9’ (0) = 0 (3.11 
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as an(n - I)-parametric family of trajectories ya starting from a neighbourhood of point qO 
of the boundary dD. Thus, we have defined the mapping 

F:8D x R++D, R, = {t, t> 0) 

specified by the formula F(t, a) = q(t, a). 

Definition. A point q* is called a focal point of the boundary aD along the trajectory 
yo i;f it is a critical value of the mapping F. 

In other words, if q* = q(t*, 0) is a focal point, then the Jacobian of the mapping F at 
the point (t*, 0) is singular, i.e., 

rank II WV lb, o) < n, B = (a. t) (3.2) 

The next theorem clarifies the geometrical meaning of this definition. 

Theorem 3.1. If q*is a focal point, then either q* E 80 or the trajectories starting 
from infinitely close boundarypoints intersect at the point q*. 

Using Lemmas 1.1 and 1.2 we derive the following: 

Corollary. A neighbourhood of the boundary aD exists in which there are no focal points. 

Proof of the theorem. Together with the trajectory q(t, 0) we consider an infinitely 
close trajectory q+ 6q, where 6q = <(WW lapel ha). At the intersection point (q+ 6q)IrM = 

q (W. Since 

(q + 6q) 1-a = q (t*) + q' (t*) e + 6qIr + . . * 

we obtain, by dropping terms of a higher order of smallness, the equality 

q’ (P) E + 6q b = 0 
or 

q’ (t*) E + <(aq/aoc) It-t*. O=d, 6a> = 0 (3.3) 

The resultant system has anon-trivial solution if condition (3.2) is satisfied. If q’ (P) # 0, 
then q* -the intersection point -lies inside the drain D. When q’ (t*) = 0, an intersection 
of the trajectories does not always follow from (3.3). In this case q' E LJD. 

Theorem 3.2. If an envelope of the family ya exists, then the focal point of the 
boundary along y. coincides with the common point of the envelope and the trajectory yo. 

Proof. Assume that an envelope prescribed by the equation f(q) = 0 exists, which 
defines a regular hypersurface in D. Let the point of tangency of the trajectory ycr and the 
envelope correspond to the instant t* (a). Then in some neighbourhood on 80 of the point q,, 
we shall have f (q (t* (a), a)) 5 0. Differentiating this identity with respect to a and keeping 
in mind the tangency condition 

we obtain 

(3.4) 

(3.5) 

From (3.4), (3.5) and the regularity condition for the envelope it follows that 

det II dq/aP IIw,~) = 0 ((t, a) = B) 

which proves the theorem. Consider the hypersurface 2, defined by Lemma l.l.Thetrajectories 
starting from the boundary &intersect the hypersurface 2, at right angles. Since inside 
the domain D each trajectory is a smooth curve , on it we can introduce a natural parameter 
and it becomes a "standard" geodesic. From an arbitrary point mE z, we draw a geodesic in 
the direction of the normal, which we write as 

y (k) = exp,,, (kn); y (0) = m, y’ (0) = n 
where II is a vector perpendicular to T,,, 2,. Thus we have defined a mapping exp:lZ,+ D of 
the normal bundle of the hypersurface Z, into D. Since the geodesics obtained coincide with 
the trajectories starting from boundary aD (two geodesics tangent to each other at sane point 
coincide), the critical values of the mapping F and of the mapping exp coincide inside dcmain 
D. A critical value of the exponential mapping of the normal bundle of the submanifold NcM 
in M is, by definition, called a focal point of the submanifold N /5/. Thus, we have proved 
the following: 

Lemma 3.1. A focal point of the boundary aD inside dcmain Dcoincideswith a focal point 
of the hypersurface Z,, where E is fairly small. 
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Theorem 3.3. (the analog of Jacobi's theorem). The distance up to ao is not minimized 
after the first focal point of a trajectory starting from the boundary 13o. 

Proof. Since the focal points of the boundary 30 and the hypersurface Z, coincide 
inside D,y (t) does not minimize the distance up to z, c/5/, Chapter 11). Since the distance 
of each point mE 2, up to ~30 equals e /I/, from this result the theorem's assertionfollows 
for internal focal points. If the first focal point y(t*) lies on the boundary aD, this 
trajectory corresponds to a libration motion. The point ~(t* 3_ 6) coincides with y (t* - 6)) 
therefore, the segment y (lo, P - 6))is shorter than the segment y (IO, t* + 6)). 

Note. The same assertion is true for a neighbourhood of the point y (0) in 3D. 
If y (tO,t,l) is a segment of the trajectory y(t), on which there are no focal points of 

the boundary aD, tien, using the statement from /5/ and arguing as abOve, we conclude that 
a neighbaurhood of the segment in D and a neighbourhood V of the point ~(0) in 90 exist such 
that y minimizes the distance among the paths joining the points of V with y(t), t <tl. Thus; 
the first focal point can be characterized as follows: the point v(t*) is the first focal 
point of the boundary b'D along y if y ([O, t&does not minimize the length of the arc up to a 
neighbourhood of y (0) is iID when t,> t*, but does minimize it when t, <t*. The locus of 
tbefpcalpoints of the boundary 80, by analogy with geometrical optics, is called a caustic. 
In the general case it is a manifold of dimension n - 1 which can have singularities. As a 
rule it is very difficult to determine the caustic. We will give two examples not requiring 
very complicated computations. 

Example 1. Let 

M=R’{z,y), 2T=~.a+~*, 2U=.z'+,aya 

The domain of possible motions is D: r'f 3~8<2h, where lr>O is the constant total energy. 
The figure shows the change in the caustic as the parameter o grows from 0 to 00 (portraits 
l-5 correspond to the values o<at(*/,, V,<m<i. t)=i, 1<0<2, 2go<60). 

1 

2 

80 0 
3 

0 0 

Figure 

Example 2. Let 
M = R' {s, y}. 2T = 2.1 + y", 2U = z* - &'. a = coast 

The domain is D: 9+ #<U. where h< 0. The caustic has a singularity -- a cusp -- which 
is located at a distance v-(1 +chV,~~n) from the origin. As the constant h decreases, the 
caustic's spike approaches the origin. We note that the definition of the caustic of the 
boundary aD has been introduced independently of the Hamilton-Jacobi equation and the caustic 
characterizes the geometry of the geodesics in the domain of possible motions with a boundary. 

4. On a solurion in a neighbourhood of the boundary of the douain of 
possible motions. Without loss of generality we will assume that the boundary of the 

domain of possible motions is connected. We pose the following problem: it is required to 
find a solution of Eq.11.1) which takes a constant value on the boundary aD, i.e., S IaLl = 
a = 00Mt. (The solution of this problem is not unique. Indeed, if S, * S is a solution, 
thenS,=2a-S is a solution also). 

Theorem 4.1. The functions 

S (q)wof 5 2Tdt 
4GOD 

(the integration is aLong a trajectory connecting the point g with aD) are unique solutions 
of the above problem. 

Proof. Following the method of characteristics /6/, we arriveataprocesswhichuniquely 
leads to the solution S(q), apart from the sign f. The reason for the ambiguity is the 
invertibility of the equation of motion. 

The theorem asserts that in a small neighbourhood of the boundary we canobtainanintegral 
surface starting from the boundary. Let us consider the possibilityofprolongingthesolution 
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"along trajectories", i.e., into a neighbourhood of some previously-fixed trajectory starting 
from the point I~,,E aD, which corresponds to the value a= 0. In spite of the fact that q(r,a) 
and S(t,a)are uniquely determined by the system's characteristics, one cannot prolong the in- 
tegral surface without limit without hitting singular points. Singular points are points at 
which the function S(q) cannot be single-valued. Non-single-valuedness arises atthosepoints 
when it is impossible to express 1.~ uniquely in terms of q. The hypotheses of the inverse 
function theorem are violated at these points, i.e., the Jacobian vanishes, which reduces to 
the definition of the caustic. Thus, a part of the caustic serves as a boundary of a single- 
valued prolongation of the solution of Eq.(l.l). Let us estimate the domain in which a 
single-valued solution exists. From each point qu =aD we issue a trajectory and find the 
first focal point go*. The distance of the point gO* from q0 along the trajectory equals a(,$). 
We shift aD along the trajectory by a distance 

c = oi;na (qe’) 

We obtain a hypersurface I,, which together with aD separates from D a strip in which 

det 1 aq/a (f, 0) 0 + 0 

and a solution of Eq.(l.l) automatically exists. If dq is a displacementalongthehypersurface. 
&, (b < CL then 

0 = dS Izb = pdq 

whence it follows that the trajectories intersect the hypersurface at right angles. Thus we 
have obtained an estimate for the number PO in the Gauss Lemma 1.2, i.e., PO must be less than 
the distance up to the nearest focal point of the boundary aD. 

In the Hamilton-Jacobi theory an essential role is played by complete integrals, namely, 
solutions of Eq.(l.l) containing besides h a further n--l constants cr=(%, . . ..u.,_,): S = S(q,.,h) 
and satisfying the non-singularity condition 

de%!& #O, E=(a,h) I 
Let us establish the connection between a complete integral and a solution of Eq.(l.l) in 

the neighbourhood of the boundary. For simplicity we restrict ourselves to the case of two 
degrees of freedom. For a fixed yalue of h the complete integral S(q,o, h) represents a single- 
parameter family of solutions of Eq.(l.l). The domain D. of these solutions clearly depend 
on a and comprises a certain part of the domain of possible solutions. Since for different 
values of a the functions S(q.cr,h)represent different solutions of the Hamilton-Jacobiequation, 
it follows from Theorem 4.1 that the closure of the domain Db can intersect the boundary aD 
only along an isolated set of points. Suppose that this condition is satisfied. If anenvelope 
of the family of solutions s (q,=,h) exists, this function too is a solution /6/. Consequently, 
this envelope is identical with one of the earlier defined solutions S(g)in the neighbourhood 
of the boundary aD. 

Example. Let 

The Hamilton-Jacobi 

Using the method of separation of variables, we find the complete integral S, and taking into 
account the equation aSIaa= 0 we obtain the envelope. 

s(..y)=t~=l+y’)IU-(~+“*~+hsMinl 

21p = 2.2 + y.2, 2V=~++*,~=conrrt;D={~++~~} 

equation is 

A direct verification shows that it indeed represents a solution in the neighbourhood of the 
boundary. 

The author thanks V. V. Kozlov under whose supervision this work was carried out, as well 
as Ia. V. Tatarinov and S. V. Bolotin for useful discussions. 
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